
MODELICA VERSUS TRNSYS – A COMPARISON BETWEEN AN
EQUATION-BASED AND A PROCEDURAL MODELING LANGUAGE FOR

BUILDING ENERGY SIMULATION

Michael Wetter and Christoph Haugstetter
United Technologies Research Center

411 Silver Lane
East Hartford, CT 06108, USA

ABSTRACT
We present the implementation of a multizone

building energy simulation model in the equation-
based modeling languageModelica and compare it to
an implementation with comparable modeling detail
in TRNSYS. Our development time comparison in-
dicates a five to ten times faster development through
use of the equation-based modeling language Mod-
elica. The development time for TRNSYS was ex-
trapolated using data from BuildOpt and comparison
between BuildOpt and TRNSYS since TRNSYS data
were not available. We provide a comparative model
validation of the Modelica and TRNSYS implemen-
tation, and compare their numerical performance.
The difference in predicted annual heating and cool-
ing energy usage between our Modelica model and
TRNSYS is 5% to 20%, which we primarily attribute
to our simplified window model. The computation
time of the Modelica model was three to four times
longer than TRNSYS, but we believe that dismissing
equation-based modeling languages as computation-
ally inefficient is a premature conclusion.

INTRODUCTION
Equation-based object-oriented modeling lan-

guages such as Modelica (Mattson and Elmqvist
1997; Fritzson and Engelson 1998) offer signifi-
cant benefits with regard to model development time,
model reuse and hierarchical model construction to
manage the complexity of large systems. The build-
ing simulation community, however, uses mainly
modeling and simulation software that use a flat rep-
resentation of the building energy system topology,
that do not use object-oriented modeling, and that
mix modeling the physics with the implementation
of numerical solution algorithms. The implications
are difficulties in representing large building energy
systems in a structured way, high costs for extending
existing code to implement new physical phenom-
ena and limited capabilities for analysis apart from
time domain simulations. For example, rather ordi-
nary tasks such as rewinding an integrator for solv-

ing an optimal control problem in a model predictive
control algorithm or performing an input-output lin-
earization for designing a controller is hard because
building simulation programs typically do not allow
specifying initial conditions for all state variables,
nor do they allow the user to control the error of a
numerical approximation to a state variable which
is critical for approximating derivatives and for con-
structing optimization algorithms with provable con-
vergence properties (Polak and Wetter 2006).
In 1996, a consortium formed to develop Model-

ica, an equation-based object-oriented language for
modeling of dynamic systems. The goal of the con-
sortium is to combine the benefits of existing model-
ing languages and to define a new uniform language
for model representation by creating a non-causal
modeling language for multi-domain physics (Fritz-
son and Engelson 1998).
Modelica has been applied for some building

energy modeling applications. For example, Merz
(2002) and Felgner et al. (2002) describe the Mod-
elica library ATPlus which can be used for thermal
building simulation. Hoh et al. (2005) expanded the
components of the ATPlus library to include room
model and heat exchangers that are embedded in
wall constructions. Nytsch-Geusen et al. (2005b)
developed a hygrothermal building model as part of
a Modelica library for multizone building heat and
mass transfer analysis. The work is conducted by a
consortium of six Fraunhofer Institutes that develops
the MOSILAB generic simulation tool that is based
on Modelica (Nytsch-Geusen et al. 2005a).

We are interested in howModelica compares to the
TRNSYS (Klein, Duffie, and Beckman 1976) simu-
lation programwhich is well established in the build-
ing simulation community. Of particular interest is
the model development time in an equation-based
versus a procedural modeling environment because
the model development time often dominates the
time that is ultimately spent for conducting numer-
ical experiments. We are also interested in how com-

plex models can be dealt with in an equation-based
object-oriented modeling environment and how their
numerical performance compares.
In the literature, equation-based and procedural

modeling languages have been compared by oth-
ers. Sahlin (1996) reports that developing a simula-
tion model in the equation-based modeling language
NMF (Sahlin and Sowell 1989) was about three times
faster than it was in the BRIS simulation program
(Brown 1990), but the computation time in BRIS was
three times faster. Sahlin et al. (2004) compared the
computation time of IDA ICE with EnergyPlus. In
their numerical experiments, IDA ICE required ap-
proximately half the computation time that was re-
quired by EnergyPlus for a three zone building with
natural ventilation and double the computation time
in initial experiments for a 53 zone building with-
out natural ventilation. In the latter experiments, the
COMIS airflow programwas not included in Energy-
Plus. Sowell and Haves (2001) compared the com-
putation time of SPARK and HVACSIM+ for a vari-
able air volume flow system that serves six thermal
zones. They report that SPARK computes about 15
to 20 times faster than HVACSIM+ and attribute the
decrease in computation time to SPARK’s graph de-
composition and cut set reduction.
In this paper, we compare the two modeling

and simulation environments TRNSYS and Dymola
(Brück et al. 2002), which provides a Modelica im-
plementation. To illustrate the complexity of the
models used in our comparison, we discuss the rel-
evant physics and provide a comparative model val-
idation. We discuss the time that was required to
implement the model equations in Modelica and we
benchmark the computation time of the two model
implementations.

BUILDING AND HVAC MODEL USED
FOR PROGRAM COMPARISON
We will now discuss the building and HVAC

model that we implemented in TRNSYS and in Mod-
elica. In both simulation environments, we imple-
mented the same one-story building for a quick ser-
vice restaurant. The building is modeled using sep-
arate thermal zones for the dining area, the kitchen
area, the storage area and the bathrooms.
In TRNSYS, we used the multizone building

model TYPE56 to model the building. The heat-
ing energy consumption and the cooling energy con-
sumption for temperature and humidity control was
modeled with the heating and cooling system that
is part of TYPE56. The air-side coupling between
zones is modeled using a fixed air flow rate and the
COUPLING key word of TYPE56’s wall model.
In Modelica, we developed a physics-based

thermal zone model that is based on Model-
ica 2.2 (Modelica Association 2005) and Model-
ica Fluid (Elmqvist, Tummescheit, and Otter 2003).
The thermal zone model can be parameterized to
model zones with an arbitrary number of opaque sur-
face constructions and windows. The thermal zone
models were connected to each other to construct
a multizone building model. Heat conduction in
opaque constructions is computed using a finite dif-
ference scheme for the spatial discretization of the
heat equation. The spatial discretization grid is auto-
matically generated based on material properties and
layer thickness, using the same algorithm as is used
in BuildOpt and described by Wetter (2004). The
air volume of each zone is completely mixed. Long-
wave radiative heat transfer between interior surfaces
is computed using an area and long-wave emissiv-
ity weighted average radiative temperature (Wetter
2004). To reduce the development time required for
coding the thermal zone model, our thermal zone
model takes as input time-series for the sky temper-
ature, the solar irradiation on the building’s outside
surfaces and a window’s transmitted solar radiation.
Those time-series can be precomputed on a simple
building model that does not need to have the correct
building geometry. In our experiments, we precom-
puted those time-series in TRNSYS. The window’s
transmitted solar radiation is used to compute the so-
lar radiation absorbed by the window panes using a
simplified optical model that allowed us, at the ex-
pense of accuracy, to not having to implement the
lengthy algorithm that is based onWindows 4.1 (Fin-
layson et al. 1993) and used by many building energy
simulation programs, including TRNSYS.

COMPARATIVE MODEL VALIDATION
We will now show results of a comparative model

validation for the above describedmultizone building
model. While not as rigorous a validation as the AN-
SI/ASHRAE Standard 140-2001 (Standard Method
of Test for the Evaluation of Building Energy Anal-
ysis Computer Programs, see ASHRAE 2001) our
comparative model validation shows that the Mod-
elica implementation represent the physical phenom-
enas with sufficient accuracy to justify a benchmark-
ing with TRNSYS. Measurement data that show the
HVAC energy usage or indoor air temperatures did
not exist for the analyzed building.
Fig. 1 shows the indoor and outdoor temperatures

and the sensible load for a mild day, with good agree-
ment between both models. Comparing the build-
ing’s annual energy consumption of the two imple-
mentations shows that Modelica underpredicts heat-
ing by 17%, overpredicts sensible cooling by 1%,
and underpredicts latent cooling by 9% and total

1100 1120 1140 1160 11800

5

10

15

20

25

hour of the year

ai
r t

em
pe

ra
tu

re
 [°

C]

Tout
Tdin,Mod
Tkit,Mod
Tsto,Mod
Tbat,Mod
Tdin,TRN
Tkit,TRN
Tsto,TRN
Tbat,TRN

(a) Room air temperatures.

1100 1120 1140 1160 1180−200

−150

−100

−50

0

50

100

150

200

hour of the year

ai
r t

em
pe

ra
tu

re
 [°

C]
, s

en
sib

le
 lo

ad
 [W

/m
2]

Tout
qdin,Mod
qkit,Mod
qdin,TRN
qkit,TRN

(b) Sensible load (heating and cooling). Not shown are the loads
for the storage area and bath rooms which are for both zones
smaller than 15W/m2 in magnitude.

Figure 1: Comparison of room air temperatures and
sensible load for a mild day. In the legend, “T” de-
notes air temperature, “q” denotes sensible load, the
subscript “out” denotes outside, “din” denotes din-
ing area, “kit” denotes kitchen, “sto” denotes stor-
age area, “bat” denotes bathroom, “Mod” denotes
Modelica and “TRN” denotes TRNSYS.

cooling by 3%. Sensible cooling, however, is over-
predicted in the dining area by 7% and underpre-
dicted in the kitchen area by 5%.

COMPARISON OF SIMULATION
ENVIRONMENTS
Modelica (Fritzson and Engelson 1998) is an

equation-based, non-causal, object oriented model-
ing language that is designed for component oriented
multi-domain modeling of dynamic systems. Mod-
els are described by differential equations, algebraic
equations and discrete equations. Using standardized
interfaces, a model’s mathematical relations between
its interface variables is encapsulated, and the model
can be represented graphically by an icon to facil-
itate model reuse, model exchange and connecting
component models to system models using a graphi-

Figure 2: Schematic view of building model in Dy-
mola’s graphical editor.

cal editor. Fig. 2 shows how our multizone building
model was created by graphically connecting heat
and air flow ports of thermal zone models. Each icon
contains a model that can consist of other models,
thus allowing to create complex models in a hierar-
chical way. This hierarchical model building facil-
itates model reuse and testing of submodels before
they are assembled to a large system model that may
be difficult to debug. To reduce the model develop-
ment time, the object-oriented model construction in
Modelica allows discipline experts, such as an HVAC
engineer and a controls engineer, to model their re-
spective process, and latter interface the models, ef-
fectively allowing to concurrently as opposed to se-
quentially build a model. By drawing lines between
model ports, mathematical relationships are gener-
ated based on the ports’ physical quantities.
Modelica libraries for multi-domain physics in-

clude models for control systems, for thermal sys-
tems, for electrical systems and for mechanical sys-
tems. Libraries are created using objects that define
standard interfaces. For example, in Modelica’s ther-
mal library there is a connector called HeatPort that
defines temperature and heat flow as

1 p a r t i a l c o nn e c t o r
2 Model ica . Thermal .
3 H e a t T r a n s f e r . I n t e r f a c e s . Hea tPo r t
4 ”Thermal po r t f o r 1−D hea t t r a n s f e r ” ;
5 S I . Tempera tu re T ”Por t t empe r a t u r e” ;
6 f low SI . HeatF lowRate Q flow
7 ”Heat f l ow r a t e (p o s i t i v e i f
8 f l ow i ng i n t o t h e component) ” ;
9 end Hea tPo r t ;

On line 6, the type prefix flow declares that all vari-
ables connected to Q flow need to sum to zero. For
example, if two HeatPorts are connected, the re-
lationships T1 = T2 and the conservation equation

Qf low,1 +Qf low,2 = 0 are generated. This connector
can then be used to define the interface for a one-
dimensional heat transfer element in the form

1 p a r t i a l model Element1D
2 ” P a r t i a l hea t t r a n s f e r e l emen t w i t h
3 two HeatPor t c onn e c t o r s t h a t does
4 no t s t o r e energy ”
5 S I . HeatF lowRate Q flow
6 ”Heat f l ow r a t e from por t a−>po r t b ” ;
7 S I . Tempera tu re dT ” po r t a . T−po r t b . T” ;
8 p u b l i c
9 Hea tPo r t p o r t a ;
10 Hea tPo r t p o r t b ;
11 e q u a t i o n
12 dT = p o r t a . T − p o r t b . T ;
13 p o r t a . Q flow = Q flow ;
14 p o r t b . Q flow = −Q flow ;
15 end Element1D ;

This one-dimensional heat transfer element can then
be used to define a thermal conductor as

1 model ThermalConduc tor
2 ”Lumped t he rma l e l emen t
3 t r a n s p o r t i n g hea t w i t h ou t s t o r i n g i t ”
4 e x t e nd s I n t e r f a c e s . Element1D ;
5 pa r ame t e r SI . ThermalConduc t ance G
6 ”Cons t an t t h e rma l conduc t ance” ;
7 e q u a t i o n
8 Q flow = G∗dT ;
9 end ThermalConduc tor ;

Note that by replacing the parameter declaration on
line 5 and the mathematical model on line 8, the
semantics can be changed to represent other one-
dimensional heat transfer elements such as a model
for long-wave radiation between two surfaces.
Modelica is a language for model representation

and cannot be executed directly. To create executable
code, it need to be parsed to a programming lan-
guage that can be compiled. To do so, we used
the Dymola 5.3e simulation environment. Dymola
performs symbolic manipulations to reduce the di-
mensionality of the linear and non-linear systems of
equations that is defined by the Modelica model. Dy-
mola creates two models, one for computing the ini-
tial values, and one for performing the time integra-
tion. For the building and HVAC model described
in this paper, Tab. 1 shows the dimensionality be-
fore and after the symbolic manipulations for those
two models. Dymola’s implementation of Model-
ica also performs automatic differentiation. For our
problem, it found analytic expressions for all Jaco-
bian matrices, eliminating the need for numerically
approximating derivatives. This reduces the compu-
tation time and increases the robustness of the numer-
ical solver. Finally, Dymola generates C/C++ code
and compiles it. Before running the simulation, a

time integrator can be selected from a library with
14 integration algorithms. The library includes im-
plicit integration algorithms with variable step size,
which are of particular interest for building energy
and controls systems since those systems are often
stiff. For controls design, simulating with time steps
of less than a minute is often required to properly
represent state machines and the rejection of distur-
bances, and using a variable step size solver allows
increasing the time step during times when no mode
switching or no fast transients occur.

Because the formulation of the system of equa-
tions is separated from its numerical solution
algorithm, restarting the integrator, as required if
the model is used as a state estimator in a model
predictive control algorithm, or linearizing the
model, as required for many controls design meth-
ods, can easily be performed. Furthermore, the
separation between equations and solution procedure
also allows automatic design of controllers that
are based on nonlinear inverse plant models (see
Looye et al. 2005). The steps involved symbolic
equation manipulations to obtain an inverse model,
automatic differentiation and generation of C code
with real-time integration algorithms that has been
downloaded to control platform and successfully
flight tested on an aircraft. Furthermore, models
formulated in Modelica can also be compiled and
run from MATLAB/Simulink which allows using
Simulink for controls design.

In comparison, TRNSYS uses a procedural lan-
guage to define its simulation models and discrete
time integration algorithm. Models can be encapsu-
lated in so-called TYPEs, which are FORTRAN rou-
tines with standardized arguments. Many TYPEs im-
plement their own mathematical solvers for differen-
tial and algebraic equations. For example, the multi-
zone building model TYPE56 uses transfer functions
byMitalas for the time integration of the opaque con-
struction’s temperature and an iterative solver for the
window pane temperatures. The output of TYPEs
can be declared as input of TYPEs in a text editor
or in a graphical editor such as in the TRNSYS Sim-
ulation Studio to define a system model. The system
model is then solved using either successive substitu-
tion with relaxation, or a differential equation solver
that converts the system of differential equations to
non-linear algebraic equations which it solves using
Powell’s method, a combination between steepest de-
scent and Newton’s method. There is no symbolic
manipulations to reduce the size of the system of
equations nor is there automatic differentiation per-
formed.

Table 1: Reduction of the number of equations and number of variables to be solved for in Dymola’s implemen-
tation of Modelica.

Before manipulation After manipulation
system of equations variables system of equations variables

Initialization linear 1 409 1 77
problem nonlinear 6 18 6 6
Differential linear 27 127 1 8
equation nonlinear 72 252 72 78

MODEL DEVELOPMENT TIME
To comment on the model development time, we

compare the model development time for our Model-
ica model with the multizone thermal building model
BuildOpt (Wetter 2005) because giving a time esti-
mate for the TRNSYS building model is difficult if
not impossible since it evolved over many years with
contributions of several developers. BuildOpt, how-
ever, was developed by one of the authors, has a ther-
mal building model with similar complexity than our
Modelica model, and its overhead for data manage-
ment between the model equations and the program
kernel is comparable with the overhead in TRNSYS.
BuildOpt is implemented in C/C++ and took about

one year to develop. This estimate does not include
the time it took to implement BuildOpt’s optical win-
dow model, sky temperature model and rather sim-
ple daylighting model, which are not implemented in
our Modelica model.1 This compares to one to two
months of development time for the Modelica build-
ing model by the same author. Thus, using Model-
ica led to a 5 to 10 times reduction in development
time compared to using C/C++. The reduced de-
velopment time is mainly attributed to the fact that
Modelica is an equation-based object-oriented lan-
guage which eliminates the need for writing routines
for data input and output and for managing the large
amount of data that is involved in a building simu-
lation. The shorter development time also manifests
itself in a four times smaller code size. Specifically,
the Modelica model required us to write 6,000 lines
of code (0.25 MB), whereas in BuildOpt, 24,000
lines of code (1.0 MB) were required. To make the
comparison representative, in Modelica we did in
the line count only include the code that we wrote,
and not the commercially available libraries Mod-
elica 2.2 and Modelica Fluid. In BuildOpt, we did
not count the daylighting model, the optical win-
dow model and the sky temperature model, which
account for 3,500 lines of code (0.2 MB), because

1Based on the code size of BuildOpt’s implementation of those
models, we estimate that implementing those models in Modelica
would take about one to two weeks of labor.

they are not implemented in our Modelica model.
We neither accounted for the size of the commer-
cial solver DASPK. We expect that the comparison
would be similar for adding new models in Modelica
vs. TRNSYS, since the overhead in each TRNSYS
type is comparable to the overhead in each BuildOpt
model.

NUMERICAL PERFORMANCE

We will nowmake an attempt to compare the com-
putation time of the TRNSYS and Modelica repre-
sentation of our multizone building model. As dis-
cussed by Sahlin et al. (2004), the creation of a prac-
tical and politically acceptable framework for fair
comparison of the numerical performance of a sim-
ulator with a fixed time step and a variable time
step integration algorithm is delicate since the tem-
poral resolutions are very different. In our com-
parison, because the computation time depends on
the solver tolerance and in the case of TRNSYS on
the integration step size, we compare the computa-
tion times for various settings of those precision pa-
rameters. To verify the numerical accuracy of the
obtained solutions, we also compare for each ex-
periment the numerical error of the state variables
with the state variables computed at the highest tol-
erance settings. Specifically, for Modelica, let εm ∈
{10−k}9k=1 be the solver tolerance and for TRNSYS,
let εt ∈ {(10−k,1/n)}, with k ∈ {1,2, . . . ,9} and n ∈
{1,2, . . . ,8} be the vector of solver tolerance and in-
tegration step size in hours. We define ε∗m ! 10−9 and
ε∗t ! (10−9,1/8), which corresponds to the highest
precision settings used in our experiments.

For a fixed solver tolerance ε, let u(ε, ·) ∈ R4 de-
note the numerical approximation to the state trajec-
tory on the time interval [0, 1], which corresponds
to one year. The state variable can be for the four
thermal zones the air temperature which we denote
by T (·, ·), the heating energy which we denote by
Eh(·, ·) or the sensible and latent cooling energy
which we denote by Ec(·, ·). We will compare for

different solver settings ε the absolute errors

eT (ε) !
1
4

4

∑
i=1

Z 1

0
|T i(ε∗,s)−T i(ε,s)|ds, (1)

eh(ε) !
1
4

4

∑
i=1

|Eih(ε
∗,1)−Eih(ε,1)|, (2)

ec(ε) !
1
4

4

∑
i=1

|Eic(ε
∗,1)−Eic(ε,1)|, (3)

where ε∗ is the highest solver tolerance. The units
are Kelvins for eT (·) and Joules for eh(·) and ec(·).

We run the Modelica model from the Dymola sim-
ulation environment and from MATLAB/Simulink.
In Dymola 5.3e, we used the GCC compiler and the
DASSL differential algebraic equation solver with its
standard solver parameters. In MATLAB/Simulink
7.0.4.365 (R14) Service Pack 2, we used the GCC
compiler and the ode15s solver which is applicable
for stiff systems. In TRNSYS 16.00.0038, we used
the solver that is based on successive substitution.
All numerical experiments were run on a Dell Preci-
sion Workstation 670 with a 2.8 GHz dual processor
and 4 GB RAM running Windows XP.

10−8 10−6 10−4 10−2
0

0.01

0.02

0.03

0.04

0.05

εt
1 [−]

e T(ε
t)

εt
2 = 1/1

εt
2 = 1/2

εt
2 = 1/3

εt
2 = 1/4

εt
2 = 1/5

εt
2 = 1/6

εt
2 = 1/7

εt
2 = 1/8

Figure 3: Numerical error eT (·) as a function of the
solver tolerance for the TRNSYS numerical experi-
ments.

Fig. 3 shows that for TRNSYS, the error in room
air temperature eT (·) introduced by changing the
number of time steps per hour ε2t from eight to one
dominates the error introduced by relaxing the solver
tolerance ε1t from 10−9 to 10−1. In fact, for ε1t ≤ 10−5
and ε2t = 1/8, we obtained eT (εt) = eh(εt) = ec(εt) =
0, which explainswhy no TRNSYS results are shown
for these solver tolerance settings in Fig. 4. Also, the
TRNSYS computation time is only weakly depen-
dent on the TRNSYS solver tolerance ε1t , as is shown
in Fig. 5. Based on our experience, however, we ex-
pect a stronger dependence of the computation time

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−110−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

ε1
m and ε1

t

e T(ε
),

e c(ε
) a

nd
 e

h(ε
)

 ’−’ : eT(ε), ’− ⋅’ : ec(ε), ’− −’ : eh(ε)

TRNSYS (εt
2 = 1/1)

TRNSYS (εt
2 = 1/8)

Dymola
Simulink

Figure 4: Numerical error as a function of the solver
tolerance for TRNSYS, Dymola and Simulink.

10−9 10−7 10−5 10−3 10−1100

101

102

103

ε1
m and ε1

t

Co
m

pu
ta

tio
n

tim
e

[m
in

]

TRNSYS (εt
2 = 1/1)

TRNSYS (εt
2 = 1/8)

Dymola
Simulink

Figure 5: Computation time as a function of the
solver tolerance and the number of time step per
hour.

on ε1t for models that have a more pronounced non-
linearities than the building model that we used in
our experiments.
For Dymola and Simulink, in contrast, we see

in Fig. 4 that the numerical error does as expected
depend on the solver tolerance because in those
simulators, the solver tolerance settings control the
integration step size and the number of iterations
in the nonlinear equations solvers. For Dymola
and Simulink, the solver failed to converge for
εm ∈ {10−2, 10−1}. For εm ≤ 10−3, each tenfold in-
crease in solver tolerance increases the computation
time on average by a factor of 1.6 for Dymola and
1.35 for Simulink. In Modelica, the computation
time is larger than in Simulink, but our experience is
that the Dymola solver is more robust.

For TRNSYS, the computation time doubles if

the number of time steps per hours is changed from
one to eight. Compared to the TRNSYS simulation
with εt = (10−4, 1/8), the Modelica simulation with
εm = 10−4 is four times slower if run from Dymola
and three times slower if run from Simulink. While
a time step length of 1/8 hours seems short for most
annual energy analysis, it is not small enough for
certain controls analysis.

Conclusively, we can support the statement of
Sahlin et al. (2004) that dismissing DAE methods
as being inherently inefficient is a premature conclu-
sion.

CONCLUSIONS

We achieved a five- to tenfold reduction in model
development time by using the equation-basedmodel
representation language Modelica compared to the
time that was required to implement a model with
similar physics in C/C++. For our situation, this
translated in about one year of labor savings. We ex-
pect that a similar comparison holds between Mod-
elica and TRNSYS, but we cannot provide data on
this comparison because TRNSYS’ building model
evolved over several years which makes a time esti-
mate difficult if not impossible. Our experience with
Modelica is that it is easier in Modelica to construct
large models than it is in TRNSYS because Modelica
allows models to be built in a hierarchical way that
facilitates debugging and reuse of submodels. Fur-
thermore, having a variable step size solver, a sym-
bolic equation manipulator, automatic differentiation
and being able to provide initial values for the state
variables enables certain controls design and analysis
that is not possible with TRNSYS.

We see the main strength of TRNSYS in its large
HVAC and building model libraries that passed sig-
nificant validation tests. However, writing a new
model as a TRNSYS TYPE requires significantly
more time than it takes to write the same model in
Modelica. A further advantage of TRNSYS is its
faster computation time, but since we did not explore
ways to improve the numerical performance of the
Modelica model, and in view of Sahlin et al. (2004)
and Sowell and Haves (2001), we do not believe that
the longer computation time is an inherent feature of
equation-based simulation environments.

ACKNOWLEDGMENTS

This research was supported by the U.S. Depart-
ment of Commerce, National Institute of Standards
and Technology, Advanced Technology Program un-
der the agreement number 70NANB4H3024.

REFERENCES
ASHRAE. 2001. ANSI/ASHRAE Standard 140-

2001, Standard Method of Test for the Eval-
uation of Building Energy Analysis Computer
Programs.

Brown, Gösta. 1990. “The BRIS simulation pro-
gram for thermal design of buildings and their
services.” Energy and Buildings 14 (4): 385–
400.

Brück, Dag, Hilding Elmqvist, Sven Erik Matts-
son, and Hans Olsson. 2002, March. “Dy-
mola for Multi-EngineeringModeling and Sim-
ulation.” Edited by Martin Otter, Proceedings
of the 2nd Modelica conference. Modelica As-
sociation and Deutsches Zentrum fur Luft- und
Raumfahrt, Oberpfaffenhofen, Germany, 55–1
– 55–8.

Elmqvist, Hilding, Hubertus Tummescheit, and
Martin Otter. 2003, November. “Object-
Oriented Modeling of Thermo-Fluid Systems.”
Edited by Peter Fritzson, Proceedings of the
3rd Modelica conference. Modelica Association
and Institutionen för datavetenskap, Linköpings
universitet, Linköping, Sweden, 269–286.

Felgner, F., S. Agustina, R. Cladera Bohigas,
R. Merz, and L. Litz. 2002, March. “Simu-
lation of Thermal Building Behaviour in Mod-
elica.” Edited by Martin Otter, Proceedings of
the 2nd Modelica conference. Modelica Asso-
ciation and Deutsches Zentrum fur Luft- und
Raumfahrt, Oberpfaffenhofen, Germany, 147–
154.

Finlayson, E. U., D. K. Arasteh, C. Huizenga,M. D.
Rubin, andM. S. Reilly. 1993, July. “WINDOW
4.0: Documentation of Calculation Procedures.”
Technical Report LBL-33943, Lawrence Berke-
ley National Laboratory, Berkeley, CA, USA.

Fritzson, Peter, and Vadim Engelson. 1998. “Mod-
elica – A Unified Object-Oriented Language
for System Modeling and Simulation.” Lecture
Notes in Computer Science, vol. 1445.

Hoh, Alexander, Timo Haase, Thomas Tschirner,
and Dirk Müller. 2005, March. “A combined
thermo-hydraulic approach to simulation of ac-
tive building components applying Modelica.”
Edited by Gerhard Schmitz, Proceedings of the
4th Modelica conference. Modelica Association
and Hamburg University of Technology, Ham-
burg, Germany. unpublished.

Klein, S. A., J. A. Duffie, and W. A. Beckman.
1976. “TRNSYS – A Transient Simulation Pro-
gram.” ASHRAE Transactions 82 (1): 623–633.

Looye, Gertjan, Michael Thümmel, Matthias
Kurze, Martin Otter, and Johann Bals. 2005,
March. “Nonlinear InverseModels for Control.”
Edited by Gerhard Schmitz, Proceedings of the
4th Modelica conference. Modelica Association
and Hamburg University of Technology, Ham-
burg, Germany, 267–279.

Mattson, Sven Erik, and Hilding Elmqvist. 1997,
April. “Modelica – An international effort
to design the next generation modeling lan-
guage.” Edited by L. Boullart, M. Loccufier, and
Sven Erik Mattsson, 7th IFAC Symposium on
Computer Aided Control Systems Design. Gent,
Belgium.

Merz, Rolf Mathias. 2002, September. “Ob-
jektorientierte Modellierung thermischen
Gebäudeverhaltens.” Ph.D. diss., Universität
Kaiserslautern.

Modelica Association. 2005, February. Modelica –
A Unified Object-Oriented Language for Physi-
cal Systems Modeling, Language Specification,
Version 2.2. Modelica Association.

Nytsch-Geusen, Christoph, T. Ernst, A. Nordwig,
P. Schneider, P. Schwarz, M. Vetter, C. Wittwer,
A. Holm, T. Nouidui, J. Leopold, G. Schmidt,
U. Doll, and A. Mattes. 2005a, March. “MOSI-
LAB: Development of aModelica based generic
simulation tool supporting model structural dy-
namics.” Edited by Gerhard Schmitz, Proceed-
ings of the 4th Modelica conference. Modelica
Association and Hamburg University of Tech-
nology, Hamburg, Germany, 527–535.

Nytsch-Geusen, Christoph, Thierry Nouidui, An-
dreas Holm, , and Wolfram Haupt. 2005b, Au-
gust. “A hygrothermal building model based
on the object-oriented modeling language Mod-
elica.” Edited by Ian Beausoleil-Morrison and
Michel Bernier, Proceedings of the Ninth Inter-
national IBPSA Conference, Volume 1. Inter-
national Building Performance Simulation As-
sociation and Ecole Polytechnique de Montreal,
Montreal, Canada, 867–876.

Polak, Elijah, andMichael Wetter. 2006. “Precision
Control for Generalized Pattern Search Algo-
rithms with Adaptive Precision Function Eval-
uations.” SIAM Journal on Optimization 16 (3):
650–669.

Sahlin, Per. 1996, May. “Modelling and Simula-
tion Methods for Modular Continuous Systems
in Buildings.” Ph.D. diss., KTH, Stockholm,
Sweden.

Sahlin, Per, Lars Eriksson, Pavel Grozman, Hans
Johnsson, Alexander Shapovalov, and Mika

Vuolle. 2004. “Whole-building simulation with
symbolic DAE equations and general purpose
solvers.” Building and Environment 39 (8):
949–958 (August).

Sahlin, Per, and Edward F. Sowell. 1989, June. “A
Neutral Format for Building Simulation Mod-
els.” Proceedings of the Second International
IBPSA Conference. International Building Per-
formance Simulation Association, Vancouver,
BC, Canada, 147–154.

Sowell, Edward F., and Philip Haves. 2001. “Effi-
cient solution strategies for building energy sys-
tem simulation.” Energy and Buildings 33 (4):
309–317.

Wetter, Michael. 2004. “Simulation-Based Build-
ing Energy Optimization.” Ph.D. diss., Univer-
sity of California at Berkeley.

Wetter, Michael. 2005. “BuildOpt – A New Build-
ing Energy Simulation Program that is Built on
Smooth Models.” Building and Environment 40
(8): 1085–1092 (August).

NOMENCLATURE
Conventions
1. Vectors elements are denoted by superscripts.

2. f (·) denotes a function where (·) stands for the
undesignated variables. f (x) denotes the value
of f (·) for the argument x.

Symbols
e error
E energy
T temperature
ε solver precision parameter
ε∗ highest setting for solver precision pa-

rameter
a ∈ A a is an element of A
R set of real numbers
! equal by definition

